Submittal

Communicating Upflow/Horizontal Left Direct/Non-Direct Vent Modulating Gas Furnace with Variable Speed Inducer

TUHMD120ACV5VB AUHMD120ACV5VB

Note: "Graphics in this document are for representation only. Actual model may differ in appearance."

TUHMD120 Airflow – Heating

TUHMD120 Airflow – Cooling

*UHM	D120ACV5VB^	Furnace Heating Airfl	ow (CFM) and	Power (W	atts) vs. Ext	ernal Static	Pressure W	Vith Filter		*UHMD12	20ACV5VB^ Fu	irnace Cool	ing Airflow	(CFM) and P	ower (Watts	s) vs. Exterr	nal Static
	Airflow	larget Airflow		0.4	Exter	hal Static P	ressure	0.0		Pressure	With Filter						
	Setting	(See Note 5)	CEM	0.1	0.3	0.5	0.7	0.9		Unit	Airflow			Extern	al Static Pre	essure	
45%	Low	748	Temp Rise	62	59	57	56	55		Outdoor	Setting		0.1	0.3	0.5	0.7	0.9
			Watts	119	107	102	94	108			290 CFM/ton	CEM	1000	1024	1028	1022	1011
	Medium Low	788	CFM	769	797	822	840	853				Watte	122	168	209	251	300
			Temp. Rise	58	56	54	53	53			310 CFM/ton	CEM	1072	100/	1007	1080	1076
			Watts	113	107	111	113	133					1072	1034	1037	1009	224
(IOW)	Medium**	832	CFM	813	841	864	880	890				vvatts	140	100	234	201	331
пеа			Temp. Rise	55	53	52	51	50		3.5	330 CFM/ton	CFM	1143	1164	1165	1157	1141
			Watts	108	107	122	135	160				Watts	160	211	261	313	364
	High	880	CFM	863	889	910	923	930			350 CFM/ton	CFM	1214	1233	1234	1224	1207
			Temp. Rise	52	50	49	49	48				Watts	182	236	291	347	400
			vvatts	104	108	135	100	191			370 CFM/ton	CFM	1286	1303	1302	1291	1272
	Low	1004	CFM Tomp Bigg	1213	1232	1237	1232	1220				Watts	207	264	323	384	438
	LOW	1224	Watts	131	160	253	345	405				CEM	1393	1408	1405	1392	1370
ర్రా			CEM	1279	1297	1299	1290	1274			400 CFM/ton	Wotto	250	311	377	1002	500
	Medium Low	1289	Temp, Rise	57	57	56	57	58					1500	1512	1509	1402	1460
65%			Watts	147	178	281	382	445			430 CFM/ton	CFM	1500	1515	1506	1492	1400
(medium)) Medium**	1361	CFM	1353	1369	1367	1355	1335				Watts	300	365	437	509	565
Heat			Temp. Rise	54	54	54	54	55			450 CFM/ton	CFM	1571	1582	1576	1559	1533
			Watts	168	201	313	423	489				Watts	337	406	481	555	611
	High	1440	CFM	1434	1448	1443	1426	1402			290 CFM/ton	CFM	1148	1169	1170	1161	1146
			Temp. Rise	51	51	51	51	52				Watts	161	213	263	315	367
	Low	1700	Watts	197	229	352	469	538			310 CFM/ton 330 CFM/ton	CEM	1230	1248	1248	1238	1221
			CFM	1699	1/0/	1690	1659	1621				Watte	187	242	297	355	408
			Temp. Rise	225	240	405	620	609				CEM	1311	1328	1327	1315	1205
			CEM	1700	1707	495	1740	1606					017	074	1327	200	1230
	Medium Low	1790	Temp Rise	57	57	57	59	60				vvatts	217	274	335	396	452
100%			Watts	382	400	551	685	752			350 CFM/ton	CFM	1393	1408	1405	1392	1370
(high) Heat	Medium**	1890	CFM	1892	1896	1870	1830	1781		4		Watts	250	311	377	444	500
			Temp. Rise	54	54	54	56	57	ğ	-	370 CFM/ton	CFM	1474	1488	1483	1468	1445
			Watts	453	462	616	750	813	Coolir			Watts	287	352	422	493	549
	High	2000	CFM	2004	2006	1975	1929	1873			400 CFM/ton	CFM	1597	1607	1601	1583	1556
			Temp. Rise	51	51	52	53	54				Watts	352	421	497	572	628
			Watts	540	538	694	822	880				CEM	1719	1727	1718	1699	1668
											430 CFM/ton	Watte	427	503	581	655	711
													1001	1907	1707	1775	1740
											450 CFM/ton	CFIM	1001	1607	1797	710	700
Notes:												vvatts	483	563	042	712	768
1. ^ First	1. * First letter may be "A" or "T".								1	290 CEM/top	CFM	1444	1458	1454	1440	1417	
3. Contin	uous Fan Set	tina: Heating or c	ooling airflo	w is appr	oximately	50% of s	selected				200 01 10/10/1	Watts	273	336	405	475	530
cooling va	alue.		J.						1			CFM	1546	1557	1552	1535	1510

4. LOW 350 cfm/ton is recommended for variable speed application for COMFORT & HUMID CLIMATE setting; NORMAL is 400 cfm/ton; HIGH 450 cfm/ton is for DRY CLIMATE setting. 5. Target airlfow is field selectable for third stage heating. Target airlfow for first and second stage heating are percentages of third stage target and are not field selectable.

* First letter may be "A" or "T".	
Letter may be "A" through "Z"	

310 CFM/ton

330 CFM/tor

350 CFM/ton

370 CFM/tor

400 CFM/ton

430 CEM/ton

450 CFM/ton

Watts

CFM

Watts

CFM

Watts

CFM

Watts

CFM

Watts

CFM

Watts

CFM

Watts

** Factory setting.
 Continuous Fan Setting: Heating or cooling airflow is approximately 50% of selected

cooling value.

Notes:

LOW 350 cfm/ton is recommended for variable speed application for COMFORT & HUMID CLIMATE setting; NORMAL is 400 cfm/ton; HIGH 450 cfm/ton is for DRY CLIMATE setting.

NOTE:

CONTINUOUS fan mode during COOLING operation may not be appropriate in humid climates. If the indoor air exceeds 60% relative humidity or simply feels uncomfortably humid, it is recommended that the fan only be used in the AUTO mode.

Airflow Adjustment

Check inlet and outlet air temperatures to make sure they are within the range specified on the Furnace rating nameplate. If the airflow needs to be increased or decreased, see the Airflow Label on the Furnace or the unit's Service Facts for information on changing the speed of the Blower Motor for your specific model. Blower speed changes are made on the User Interface.

INDOOR BLOWER TIMING

Heating: The Integrated Furnace Control module controls the Indoor Blower. The Blower start is fixed at 45 seconds after ignition. The FAN-OFF period is field selectable by the User Interface at 60, 100, 140, or 180 seconds. The factory setting is 100 seconds.

MODEL	TUHMD120ACV5VB 6
	AUHMD120ACV5VB
ТҮРЕ	Upflow/Horizontal Left
RATINGS 2	
45% (low) heat Input BTUH	54 000
45% (low) heat Capacity BTUH (ICS) ③	52 000
100% (high) heat Input BTUH	120,000
100% (high) heat Capacity BTUH (ICS) 3@	a) 114 000
Temp, rise (MinMax.) °F.	40 - 70
AFUE (Upflow / Horizontal)	97.0/96.2
BLOWEB DBIVE	DIRECT
Diameter - Width (In)	10 x 10
No. Used	1
Speeds (No.)	Variable
CFM vs in wa	See Ean Performance Table
Motor HP	1
BPM	Variable
Volts/Ph/Hz	115/1/60
FLA	10.0
	Contrifugal
Drive - No Speeds	Direct Verichle
Motor HP - RPM	Direct - Variable
Volte / Ph / Hz	115/2/60
FLA	10
	1.0
FILIER — Furnished?	Yes
lype Recommended	High Velocity
	1 - 24x25 - 1 in.
	3 Round
HEAT EXCHANGER	
lype -Fired	Aluminized Steel - Type I
-Unfired	
Gauge (Fired)	20
ORIFICES — Main	
Nat. Gas. Qty. — Drill Size	6 — 45
L.P. Gas Qty. — Drill Size (5)	6 — 56
GAS VALVE	Redundant - Three Stage
PILOT SAFETY DEVICE	
Туре	Hot Surface Igniter
BURNERS — Type	Multiport Inshot
Number	6
POWER CONN. — V/Ph/Hz ④	115/1/60
Ampacity (In Amps)	13.7
Max. Overcurrent Protection (Amps)	15
PIPE CONN. SIZE (IN.)	1/2
DIMENSIONS	
Crated (In)	
WEIGHT	41-0/4 X 20-1/2 X 00-1/2
Shipping (Lbs.)/Not (Lbs)	000 / 100
Shipping (LDS.)/ Net (LDS)	206 / 193

① Central Furnace heating designs are certified to ANSI Z21.47 / CSA 2.3.
② For U.S. applications, above input ratings (BTUH) are up to 2,000 feet, derate 4% per 1,000 feet for elevations above 2,000 feet above sea level.

For Canadian applications, above input ratings (BTUH) are up to 4,500 feet, derate 4% per 1,000 feet for elevations above 4,500 feet above sea level.

③ Based on U.S. government standard tests.

④ The above wiring specifications are in accordance with National Electrical Code; how-

ever, installations must comply with local codes.
Furnace ships in natural gas configuration. The LP conversion kit used with the modulating furnace is BAYLPSS220B or BAYLPKT220B.

⑥ Energy Star

MODULATING OPERATION

The modulating gas valve provides longer heating cycles for more consistent heating comfort. Modulates from 40% to 100% in less than 1% increments of the furnace's heating capacity saving energy, while at the same time providing maximum homeowner comfort.

COMMUNICATING MODE

Furnace is shipped ready to be connected in communicating mode using three wire hook-up using A/TCONT900 comfort control.

ALTERNATE 24V MODE

Furnace is field configurable to 24V non-communicating mode.

COMFORT CONTROL

Communicating furnace design, offers plug and play – walk away installation. Assures the entire heating and air conditioning system is set up in the proper modes to optimize the engineered performance of the matched system installed. The furnace can also be connected in 24V mode.

NATURAL GAS MODELS

Central Heating furnace designs are certified by the American Gas Association for both natural and L.P. gas. Limit setting and rating data were established and approved under standard rating conditions using American National Standards Institute standards.

ENERGY EFFICIENT OPERATION

Furnace is certified to leak 2% or less of nominal air conditioning CFM delivered when pressurized to .5" water column with all inlets, outlets, and drains sealed.

SAFE OPERATION

The Integrated System Control has solid state devices, which continuously monitor for presence of flame, when the system is in the heating mode of operation. Dual solenoid combination gas valve and regulator provide additional safety.

QUICK HEATING

Durable, cycle tested, heavy gauge aluminized steel heat exchanger quickly transfers heat to provide warm conditioned air to the structure. Low energy power vent blower, to increase efficiency and provide a positive discharge of gas fumes to the outside.

BURNERS

Multi-port In-shot burners will give years of quiet and efficient service. All models can be converted to L.P. gas without changing burners.

INTEGRATED SYSTEM CONTROL

Exclusively designed operational program provides total control of furnace limit sensors, blowers, gas valve, flame control and includes self diagnostics for ease of service. Also contains connection points for EAC and Humidifier.

AIR DELIVERY

The variable speed blower motor has sufficient airflow for most heating and cooling requirements and will switch from heating to cooling speeds on demand from room thermostat. The blower door safety switch will prevent or terminate furnace operation when the blower door is removed.

SECONDARY HEAT EXCHANGER

The furnace has a special type 29-4C[™] stainless steel secondary heat exchanger to reclaim heat from flue gases which would normally be lost.

STYLING

Heavy gauge steel and "wrap-around" cabinet construction is used in the cabinet with baked-on enamel finish for strength and beauty. The heat exchanger section of the cabinet is completely lined with foil faced fiberglass insulation. This results in quiet and efficient operation due to the excellent acoustical and insulating qualities of fiberglass. Built-in bottom pan and alternate bottom, left or right side return air connection provision.

FEATURES AND GENERAL OPERATION

The High Efficiency Gas Furnaces utilize an Adaptive Heat Up Silicon Nitride Hot Surface Ignition system, which eliminates the waste of a constant burning pilot. The integrated system control lights the main burners upon a demand for heat from the room thermostat. Complete front service access.

a. Low energy power venter

b. Vent proving pressure switch.

About Trane and American Standard Heating and Air Conditioning Trane and American Standard create comfortable, energy efficient indoor environments for residential applications. For more information, please visit www.trane.com or www.americanstandardair.com

The manufacturer has a policy of continuous data improvement and it reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.

TUHMD120-SUB-1H-EN 30 Mar 2020 Supersedes TUHMD120-SUB-1G (November 2016)